Beyond Ohba's Conjecture: A bound on the choice number of k-chromatic graphs with n vertices

نویسندگان

  • Jonathan A. Noel
  • Douglas B. West
  • Hehui Wu
  • Xuding Zhu
چکیده

Let ch(G) denote the choice number of a graph G (also called “list chromatic number” or “choosability” of G). Noel, Reed, and Wu proved the conjecture of Ohba that ch(G) = χ(G) when |V (G)| ≤ 2χ(G) + 1. We extend this to a general upper bound: ch(G) ≤ max{χ(G), ⌈(|V (G)| + χ(G)− 1)/3⌉}. Our result is sharp for |V (G)| ≤ 3χ(G) using Ohba’s examples, and it improves the best-known upper bound for ch(K4,...,4).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Choosability of Graphs with Bounded Order: Ohba's Conjecture and Beyond

The choice number of a graph G, denoted ch(G), is the minimum integer k such that for any assignment of lists of size k to the vertices of G, there is a proper colouring of G such that every vertex is mapped to a colour in its list. For general graphs, the choice number is not bounded above by a function of the chromatic number. In this thesis, we prove a conjecture of Ohba which asserts that c...

متن کامل

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

Ohba's conjecture for graphs with independence number five

Ohba has conjectured that if G is a k-chromatic graphwith at most 2k+1 vertices, then the list chromatic number or choosability ch(G) of G is equal to its chromatic number χ(G), which is k. It is known that this holds if G has independence number at most three. It is proved here that it holds if G has independence number at most five. In particular, and equivalently, it holds if G is a complete...

متن کامل

Towards on-line Ohba's conjecture

Ohba conjectured that every graph G with |V (G)|6 2χ(G)+1 has its choice number equal its chromatic number. The on-line choice number of a graph is a variation of the choice number defined through a two person game, and is always at least as large as its choice number. Based on the result that for k > 3, the complete multipartite graph K2?(k−1),3 is not on-line k-choosable, the on-line version ...

متن کامل

The lower bound for the number of 1-factors in generalized Petersen graphs

‎In this paper‎, ‎we investigate the number of 1-factors of a‎ ‎generalized Petersen graph $P(N,k)$ and get a lower bound for the‎ ‎number of 1-factors of $P(N,k)$ as $k$ is odd‎, ‎which shows that the‎ ‎number of 1-factors of $P(N,k)$ is exponential in this case and‎ ‎confirms a conjecture due to Lovász and Plummer (Ann‎. ‎New York Acad‎. ‎Sci‎. ‎576(2006)‎, ‎no‎. ‎1‎, ‎389-398).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2015